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Tracking cortical representations 
of facial attractiveness using 
time‑resolved representational 
similarity analysis
Daniel Kaiser* & Karen Nyga

When we see a face, we rapidly form an impression of its attractiveness. Here, we investigated how 
rapidly representations of facial attractiveness emerge in the human brain. In an EEG experiment, 
participants viewed 100 face photographs and rated them for their attractiveness. Using time-resolved 
representational similarity analysis on the EEG data, we reveal representations of facial attractiveness 
after 150–200 ms of cortical processing. Interestingly, we show that these representations are related 
to individual participants’ personal attractiveness judgments, suggesting that already early perceptual 
representations of facial attractiveness convey idiosyncratic attractiveness preferences. Further, we 
show that these early representations are genuinely related to attractiveness, as they are neither 
explained by other high-level face attributes, such as face sex or age, nor by features extracted by 
an artificial deep neural network model of face processing. Together, our results demonstrate early, 
individually specific, and genuine representations of facial attractiveness, which may underlie fast 
attractiveness judgments.

When we see a face, we almost immediately can tell whether we find it attractive or not1. Beyond such first 
impressions, facial attractiveness affects people’s everyday lives in fundamental ways: for instance, an attractive 
face grants advantages in various aspects, such as increased success in dating2,3, receiving help more often4,5, and 
being more successful on the job market6,7.

Given these varied effects of facial attractiveness, a large body of research has focused on understanding the 
factors that make a face attractive. One line of research has tried to establish objective physical markers of facial 
attractiveness8,9, revealing that faces are more attractive when they are more similar to the average10,11, more 
symmetric11–13, or have favourable sexual characteristics14. This research has led into advances in computer vision, 
providing algorithms that can predict how attractive humans will find a particular face15,16. However, there is 
considerable agreement that there is also a subjective component to facial attractiveness, with responses vary-
ing substantially between observers17–19. Indeed, our impression of facial attractiveness may depend on both: an 
objectively attractive physical composition of visual features and an idiosyncratic appreciation of these features.

How does the brain achieve the transition from physical stimulus properties into an individual representa-
tion of facial attractiveness? To answer this question, previous studies have used event-related potentials (ERPs) 
obtained from EEG recordings to investigate when brain responses to more or less attractive faces differ. Although 
in many such studies facial attractiveness influences multiple ERP components, a key question is when facial 
attractiveness is first represented in EEG signals. The answers to this question are quite mixed. Some studies 
highlight relatively early ERP modulations depending on facial attractiveness, for instance at the N170 pro-
cessing stage20–26, suggesting that attractiveness is analysed during perceptual face processing. Other studies 
suggest that attractiveness is first analysed during the N250 processing stage27–30, at the time when face identity 
is represented. Finally, some studies only find late ERP modulations, at the P3 stage or during later slow waves 
starting from around 350–400 ms31–37, suggesting that facial attractiveness is analysed during post-perceptual 
stages of cognitive processing.

Given these mixed findings, at which time do brain signals first reflect face attractiveness? One factor that 
complicates the interpretation of previous studies clearly is the variety in tasks (with some studies employing 
explicit attractiveness ratings and others employing orthogonal tasks), which makes it hard to appreciate whether 
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ERP differences are due to variations in attractiveness or differences in task demands. Another problem is the 
variety in stimulus materials across studies (with different studies using faces of different genders, ages, and 
degrees of realism) and a lack of control for stimulus variability within individual studies, which makes it hard to 
assess whether ERP differences are genuinely related to differences in perceived attractiveness or other low- and 
high-level visual attributes of the face. Further, ERP studies can sometimes lack the sensitivity that multivari-
ate analyses techniques offer for detecting subtle changes between conditions38,39, thereby missing out on those 
temporal signatures that are weaker.

Here, we set out to resolve when cortical representations of facial attractiveness first emerge during an explicit 
attractiveness judgment task. By using multivariate representational similarity analysis (RSA40) on EEG data 
recorded during this task, we were able to temporally track the emergence of representations of facial attractive-
ness with high sensitivity, while at the same time being able to control for other sources of variability in the faces. 
We found that already between 150 and 200 ms of processing, brain representations reflected facial attractiveness. 
We uncover three key aspects of these early representations of facial attractiveness: first, we show that even such 
early cortical representations are partly explained by participants’ idiosyncratic attractiveness ratings. Second, 
we demonstrate that cortical representations of facial attractiveness are not explained by other high-level face 
attributes, such as the person’s sex, ethnicity, or age. Third, we use an artificial deep neural network (DNN) to 
show that cortical representations of facial attractiveness are not explained by visual features used for automated 
face recognition. Together, our results suggest that EEG signals carry genuine and individual representations of 
facial attractiveness, which emerge within the first 200 ms of cortical processing.

Results
We asked participants (n = 23) to rate the attractiveness of 100 male and female faces (see Fig. 1a for examples). 
Stimuli were highly controlled full-front face photographs taken from the Face Research Lab London Set41, 
eliminating many sources of visual variability. On every trial, participants saw one of the faces for 1.450 ms and 
subsequently answered two questions (Fig. 1b). On the first question, they indicated whether they found the 
face attractive or not (hereinafter referred to as “yes/no response”). On the second question, they indicated how 
attractive they found the face on a 1–7 scale (hereinafter referred to as “attractiveness rating”). We compared 
participants’ attractiveness ratings with ratings from a large group of observers (as provided with the Face 
Research Lab London Set; hereinafter referred to as “database rating”). Both the database ratings and responses 
collected during the experiment showed reasonable variance across the faces (Fig. 1c). However, individual-
participant responses were only moderately correlated with the database ratings (r = 0.37 and r = 0.34 for the 
yes/no responses and attractiveness ratings, respectively), suggesting that there was substantial inter-individual 
variability in attractiveness judgments.

Figure 1.   Stimuli and experimental approach. (a) Stimuli were full-front and neutral face photographs of 100 
individuals, covering different sexes, ages, and ethnicities. Images are taken from Ref.41 under a CC BY 4.0 
license. (b) During the EEG experiment, participants viewed a single face on every trial. After seeing the face for 
1450 ms, they were first asked to indicate whether they found the face attractive or not (yes/no response) and 
then asked to indicate how attractive they found the face on a 1–7 scale (attractiveness rating). Responses were 
given using the mouse. To avoid response-specific motor preparation, the positions of response options were 
differently arranged around a circle on every trial. (c) Average attractiveness ratings from the Face Research 
Lab London Set database (n = 2531), and yes/no responses and attractiveness ratings given by our participants 
(n = 23). Pie charts show histograms of rating responses (left and right charts) and the number of faces rated 
as attractive or unattractive by the majority of participants (middle chart). These data show that there was 
considerable variation in ratings across faces, with a comparable amount of faces being judged as attractive or 
unattractive in the current experiment. A detailed overview of participants’ attractiveness judgments can be 
found in Supplementary Fig. S5.
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To measure how brain signals differed between faces of different perceived attractiveness, we recorded partici-
pants’ brain activity using a 64-channel EEG system. We analyed EEG signals using time-resolved multivariate 
representational similarity analysis (RSA40,42). In RSA, the organization of brain representations is assessed by 
means of the pairwise (dis)similarity of each combination of stimuli, organized in neural representational dissimi-
larity matrices (RDMs). Neural RDMs were constructed separately for 34 discrete time bins (50 ms width) across 
the epoch, from 250 ms pre-stimulus to 1450 ms post-stimulus. For each time bin, response patterns (across all 
electrodes and across all time points within the 50 ms time bin) evoked by each one face were correlated with 
response patterns evoked by each other face. RDM entries were created by subtracting these correlations from 
1, so that each RDM entry reflected how dissimilar a given face was represented from another face at a given 
time. One such 100-by-100 RDM was constructed for each time bin (Fig. 2a). Full details on the neural RDM 
construction can be found in the Materials and Methods section.

To investigate when cortical representations carried information about facial attractiveness, we modelled 
each participants’ neural RDMs using three predictor RDMs (Fig. 2a): (1) a predictor RDM that reflected the 
faces’ pairwise dissimilarity in the average attractiveness ratings taken from the Face Research Lab London Set 
database, (2) a predictor RDM that reflected the faces’ pairwise dissimilarity in individual participants’ yes/no 
responses given during the experiment, and (3) a predictor RDM that reflected the faces’ pairwise dissimilarity 
in individual participants’ attractiveness ratings given during the experiment. Full details on the predictor RDM 
construction can be found in the Materials and Methods section.

Early cortical representations of facial attractiveness.  Correlating the predictor RDMs with the 
neural RDMs for each 50 ms time bin across the epoch, we obtained a timeseries of how well EEG response 

Figure 2.   Analysis approach and key results. (a) Schematic description of the representational similarity 
analysis. EEG response patterns for each face were extracted separately for consecutive time bins of 50 ms (e.g., 
between 150 and 200 ms) across the epoch. Neural representational dissimilarity matrices (RDMs) were then 
constructed by correlating these response patterns (across time points and electrodes) for each pair of faces 
(for details, see “Materials and methods”). This yielded 100-by-100 RDMs whose entries indexed the pairwise 
neural dissimilarity between faces for each time bin. For each time bin separately, neural RDMs were correlated 
with the three predictor RDMs, which captured the faces’ pairwise dissimilarity in attractiveness, based on (1) 
ratings from the Face Research Lab London Set database, (2) participants’ individual yes/no responses, and (3) 
participants’ individual rating responses. (b) All three predictor RDMs were significantly correlated with the 
neural RDMs, starting from 100 to 150 ms, suggesting an early neural representation of facial attractiveness. 
(c) When partialing out the average database ratings, we still found that participants’ individual judgments 
predicted neural responses after 150–200 ms, suggesting that already during this early time window, responses 
partly reflect an idiosyncratic signature of facial attractiveness. Error margins represent standard errors of the 
mean. Significance markers denote p < 0.05 (corrected for multiple comparisons across time).
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patterns were predicted by facial attractiveness, as defined by the three predictors. Information about facial 
attractiveness was obtained for widespread temporal clusters across the EEG epoch and for all three types of 
predictors (Fig. 2b): database ratings predicted neural representations from the 100-150 ms time bin (peaking 
at 450–500 ms, peak t[22] = 5.08, p < 0.001, pcorr < 0.001, d = 1.06), individual yes/no responses predicted neural 
representations from the 100–150 ms time bin (peaking at 500–550 ms, peak t[22] = 4.37, p < 0.001, pcorr = 0.002, 
d = 0.91), and individual attractiveness ratings also predicted neural representations from the 100–150 ms time 
bin (peaking at 600–650  ms, peak t[22] = 4.53, p < 0.001, pcorr < 0.001, d = 0.94). As expected, the more fine-
grained attractiveness ratings predicted variance in the neural data beyond the yes/no responses (see Supple-
mentary Fig. S1a). Together, these results suggest a neural signature of facial attractiveness that already emerges 
during perceptual face processing.

Early representations of facial attractiveness reflect individual attractiveness judgments.  Are 
neural representations of facial attractiveness explicable by average preferences emerging across a large group of 
observers, potentially driven by a fixed set of physical face properties, with inter-individual variability reflecting 
merely noise? Or do they partly reflect idiosyncratic preferences, that is an individual person’s unique aesthetic 
preference for particular faces? To resolve this question, we performed an analysis where we modelled neural 
RDMs as a function of individual yes/no responses and attractiveness ratings, while controlling for the database 
ratings using partial correlation analysis43–45 (Fig. 2c). We found that individual attractiveness judgments still 
significantly predicted cortical representations, both when considering yes/no responses (from the 150–200 ms 
time bin; peaking at 500–550 ms, peak t[22] = 3.90, p < 0.001, pcorr = 0.012, d = 0.81) and when considering attrac-
tiveness ratings (from the 150–200 ms time bin; peaking at 600–650 ms, peak t[22] = 3.87, p < 0.001, pcorr = 0.002, 
d = 0.81). Similar results were obtained when partialing out the average judgments obtained across participants 
in the current experiment (see Supplementary Fig. S1b). Finding that already in the 150–200 ms time bin par-
ticipants’ individual judgments explained neural responses better than group-average ratings alone suggest that 
even early representations of facial attractiveness are linked to individual face preferences, rather than to physical 
features that similarly determine attractiveness for all observers. Further, to solidify that these early represen-
tations of facial attractiveness are indeed somewhat independent from particular physical face attributes, we 
performed two control analyses.

Early representations of facial attractiveness are not explained by other high‑level face attrib‑
utes.  In the first analysis, we tested whether other high-level face attributes (the depicted person’s sex, eth-
nicity, or age) could explain the different cortical responses to faces of different attractiveness. To do so, we 
modelled neural RDMs using three predictor RDMs (Fig. 3a): (1) a predictor RDM that modelled the faces 
dissimilarity in sex, (2) a predictor RDM that modelled the faces dissimilarity in ethnicity, and (3) a predictor 
RDM that modelled the faces dissimilarity in age; for details, see Materials and Methods. Each of these high-
level attributes predicted parts of the neural representation across time (Fig. 3b). Sex predicted face representa-
tions from the 100–150 ms time bin (peaking at 350–400 ms, peak t[22] = 5.31, p < 0.001, pcorr < 0.001, d = 1.11), 
ethnicity predicted representations from the 100–150 ms time bin (peaking at 100–150 ms, peak t[22] = 6.82, 
p < 0.001, pcorr < 0.001, d = 1.42), and age predicted representations from the 350–400 ms time bin (peaking at 
500–550 ms, peak t[22] = 3.68, p < 0.001, pcorr = 0.007, d = 0.77). We then modelled neural representations as a 
function of individuals yes/no responses and attractiveness ratings, while controlling for all three high-level 
attributes using partial correlation analyses (Fig. 3c). We found that representations of facial attractiveness were 
not explained by the depicted persons’ sex, ethnicity, and age: Database ratings still predicted neural representa-
tions from the 100–150 ms time bin (peaking at 450–500 ms, peak t[22] = 4.59, p < 0.001, pcorr = 0.001, d = 0.96), 
individual yes/no responses predicted representations from the 150–200 ms time bin (peaking at 500–550 ms, 
peak t[22] = 3.70, p < 0.001, pcorr = 0.009, d = 0.77), and individual attractiveness ratings predicted representations 
from the 150–200 ms time bin (peaking at 600–650 ms, peak t[22] = 4.37, p < 0.001, pcorr < 0.001, d = 0.91).

Early representations of facial attractiveness are not explained by deep neural network fea‑
tures.  In the second control analysis, we controlled for a variety of visual features analysed during face rec-
ognition by a deep neural network (DNN). DNNs are the current state-of-the-art for modelling visual repre-
sentations emerging at different processing stages of biological vision46–48. Here, we used a DNN trained on 
recognizing faces (VGG-face49), which has previously been shown to accurately approximate features analysed 
during cortical face processing50. We extracted predictor RDMs from the 16 convolutional layers of the DNN, in 
which each entry reflected the pairwise dissimilarity (1-correlation) between the layer-specific activation vectors 
for two faces (Fig. 3d). These RDMs predicted cortical activations starting from the 50–100 ms time bin and, in 
line with previous reports51–53, early representations (e.g., at 100–150 ms post-stimulus) were better captured by 
early DNN layers, while later representations were better captured by late DNN layers (Fig. 3e). Detailed results 
for all DNN layers can be found in Supplementary Fig. S2. Next, we again modelled neural representations as 
a function of individual yes/no responses and attractiveness ratings, but now controlling for features extracted 
in each of the 16 DNN layers (and additionally for the faces’ sex, ethnicity, and age) using partial correlation 
analyses (Fig. 3f). Critically, we again found that database ratings (from the 100–150 ms time bin; peaking at 
450–500 ms, peak t[22] = 4.93, p < 0.001, pcorr < 0.001, d = 1.03), yes/no responses (from the 100–150 ms time bin; 
peaking at 500–550 ms, peak t[22] = 3.54, p < 0.001, pcorr = 0.007, d = 0.74), and attractiveness ratings (from the 
150–200 ms time bin; peaking at 600–650 ms, peak t[22] = 4.45, p < 0.001, pcorr < 0.001, d = 0.93) still predicted 
neural representations. Together, the two control analyses underscore the notion that early representations of 
facial attractiveness are somewhat independent from specific and fixed physical face properties.
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In sum, our study reveals genuine and individually specific representations of face attractiveness. Across all 
analyses, these representations first emerged between 150 and 200 ms post-stimulus. This suggests that already 
during perceptual stages of face analysis, the brain computes how attractive we find a particular face.

Discussion
The current study used time-resolved representational similarity analysis on EEG data to track the dynamic 
emergence of cortical representations related to facial attractiveness. As the key result, we demonstrate that—
across multiple analyses—robust neural representations of facial attractiveness emerge after 150–200 ms of 
vision. This timing suggests that differences in face attractiveness are related to processing differences in the N170 
range54–56. Indeed, when comparing ERPs evoked by faces that were either rated as attractive or unattractive, we 
also found differences in N170 peak amplitudes, with stronger amplitudes for less attractive faces (see Supple-
mentary Fig. S3). Our results thereby support earlier studies that have shown N170 modulations as a function 
of facial attractiveness20–26. Further, this timing of attractiveness-related responses is consistent with functional 
neuroimaging studies showing that facial attractiveness is represented in regions of the visual face processing 
network57–61. This suggests that face attractiveness is computed during perceptual processing, at the same time 
when basic facial configurations are analysed55,56,62. Our results thereby suggest that facial attractiveness is derived 
from perceptual face features, potentially related to favourable face configurations.

However, given that we found representations of facial attractiveness during perceptual processing, one could 
argue that they are not genuine representations of attractiveness, but representations of visual features that co-
vary with attractiveness in our stimulus set. Our results offer two principal refutations of this argument. First, we 
show that early representations of facial attractiveness are neither explained by other high-level face attributes nor 
by features extracted by a DNN trained on face recognition. This shows that there is no straightforward mapping 
between the features used to determine facial attractiveness and features extracted for other categorization pur-
poses. Second, we show that early representations of facial attractiveness are partly explained by participant’s 
individual attractiveness judgments. This indicates that even such early processing of facial attractiveness is not 
strictly determined by the presence of particular physical face attributes: If representations of facial attractiveness 
were indeed a consequence of the presence or absence of a fixed set of visual features, one would expect that they 
are best predicted by the more stable average attractiveness rating across many observers. However, we find that 
representations of facial attractiveness are partly predicted by participants’ individual attractiveness judgments, 
suggesting that they are not directly explained by the same physical properties for all observers.

Figure 3.   Controlling for high-level face attributes and DNN features. (a) To quantify high-level face 
attributes, we constructed RDMs based on the faces’ dissimilarity in sex (same sex: similar, different sex: 
dissimilar), ethnicity (same ethnicity: similar, different ethnicity: dissimilar), and age (dissimilarity: absolute 
age difference between face pairs). (b) The three high-level attributes all explained significant proportions of 
the neural representation. (c) When controlling for the three attributes, participants’ attractiveness judgments 
still predicted neural representations within 200 ms after onset. (d) To quantify DNN features, we extracted 
RDMs based on the dissimilarity of DNN activation patterns for each layer of a 16-layer DNN trained on face 
recognition (VGG-face; see “Materials and methods”). (e) DNN features at each layer predicted a significant 
proportion of the neural representation, with early layers better predicting early activations, and late layers 
better predicting later activations. For detailed results, see Supplementary Fig. S2. (f) When controlling for 
both the DNN features and the high-level face attributes, we again found that within 200 ms participants’ 
attractiveness judgments still predicted neural representations. Error margins represent standard errors of the 
mean. Significance markers denote p < 0.05 (corrected for multiple comparisons across time).
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Our results suggest that there are two types of attractiveness signals: First, there are those that can be explained 
by average attractiveness ratings across many observes (i.e., ratings obtained from the database). These signals 
show that there is a substantial amount of shared taste across participants, and that this amount of shared taste 
is sufficient to explain brain representations on an individual basis. As a downside, these signals are hard to dis-
criminate from objective physical stimulus properties that may drive observers’ shared taste. Second, there are 
signals that reflect personal taste (i.e., our participants’ attractiveness ratings during the experiment), which are 
not explained by shared taste across individuals. Although such signals may offer evidence for inter-individual 
variability in attractiveness representations, their interpretation is not straightforward either: during an attrac-
tiveness judgment task like the one used here, differences between attractive and unattractive faces are not only 
related to differences in perceived attractiveness, but also to decision making processes.

In our experiment, the representation of such personal attractiveness preferences within the first 200 ms 
of processing suggests that differences in aesthetic appreciation are indeed related to perceptual computations 
differing between individuals. While differences in later brain representations can be attributed to task-related 
differences in cognitive and attentional processes as well as decision making, early perceptual representations are 
less sensitive to such processes63,64. Our findings therefore suggest that at the N170 processing stage individual 
features are weighted in idiosyncratic ways to give rise to an individual representation of facial attractiveness. 
This idea is in line with recent work showing that representations in object-selective visual cortex are best mod-
elled by each person’s idiosyncratic judgments about the objects’ semantic similarities65,66, showcasing that even 
perceptual brain representations can have an idiosyncratic component. Clearly, additional work needs to be done 
to map out this idiosyncratic component in facial attractiveness representations.

Beyond the early representation of facial attractiveness, we show that EEG responses also carried a sustained 
neural attractiveness signal. These sustained effects are in line with the later modulations of facial attractive-
ness stressed by some EEG studies27–37. These studies may not have found earlier differences related to facial 
attractiveness for varied reasons: Apart from the lower sensitivity offered by univariate ERP analyses, individual 
studies used largely orthogonal tasks, had small sample sizes, or did not specifically look for N170 differences. 
Such later EEG effects are consistent with fMRI activation differences in frontal regions as a function of facial 
attractiveness57–61,67. One possibility is that such late signals reflect neural representations related to decision 
making68 and the maintenance of decisions in working memory69; when using an explicit attractiveness judge-
ment task, these representations are hard to distinguish from genuine representations of face attractiveness. 
Alternatively, these late brain signals may reflect the cognitive processing of aesthetic quality: Some studies have 
suggested that such processes span frontal areas associated with stimulus valuation, such as the ventromedial 
prefrontal cortex and orbitofrontal cortex61,67, while others have localized them to the default-mode network, 
potentially due to the self-referential character of aesthetic appreciation70,71. What is interesting is that such late 
processes seem to reflect aesthetic quality more generally61,67,71, which can in principle arise from different visual 
inputs, such as human faces, visual scenes, and abstract stimuli, or even from non-visual inputs. Clearly, more 
research is needed to understand how neural representations of aesthetic quality are dynamically changing as 
they propagate across the brain, and which cortical networks they engage at different time points. By combining 
spatially and temporally resolved neural recordings, future studies could thereby tease apart the emergence of 
different perceptual, cognitive and emotional aspects of aesthetic experiences 72,73.

In sum, our study provides evidence for an early representation of facial attractiveness, that is both genuine 
(i.e., unrelated to other visual face attributes) and individually specific (i.e., partly explained by participants’ 
personal attractiveness preferences). Finding that this representation emerged within 200 ms of vision provides 
a neural basis for rapid judgments of facial attractiveness in real-life contexts.

Materials and methods
Participants.  Twenty-four adults (mean age 19.8, SD 1.6; 20 female) participated in the study. This sample 
size was comparable with the sample sizes of previous EEG studies on facial attractiveness20–37, which tested 
a median of 20 participants, and an average of 24.6 participants. All participants had normal or corrected-to-
normal vision. Participants were psychology students at the University of York and received course credits for 
participation. Prior to the experiment, participants provided written informed consent. All procedures were 
approved by the ethical committee of the Department of Psychology at the University of York and were in 
accordance with the Declaration of Helsinki. One participant was excluded because of technical problems that 
caused missing data, leaving 23 complete datasets for analysis.

Stimuli.  The stimulus set consisted of 100 neutral full-front face photographs (for examples see Fig.  1a), 
taken from the Face Research Lab London Set41. These stimuli were colour photographs (1350-by-1350 pixels 
resolution). The standardized way of photographing limited variations in image features that are unrelated to dif-
ferences in individual faces. No further adjustments were made to the faces obtained from the database. For each 
face, the stimulus set includes attractiveness ratings from a large set of observers (n = 2531), with considerable 
variance in attractiveness ratings between faces (see Fig. 1c). Each of the faces also comes with additional meta-
data, including the photographed person’s self-reported gender, age, and ethnicity. An overview of the metadata 
for the 100 faces used in our Experiment is shown in Supplementary Fig. S4.

Experimental paradigm.  During the EEG experiment, participants completed a single session of 700 tri-
als, which was split into 7 blocks of 100 trials. On each trial, participants viewed one of the faces (7°-by-7° visual 
angle) for 1450 ms (Fig. 1b), on a uniform black background. Within each block, each face was shown exactly 
once, with trial order fully randomized within the block. After seeing the face, a blank screen was shown for 
100 ms before participants were asked two questions. On the first question, they were asked to indicate whether 
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they found the face attractive or not by selecting yes or no. On the second question, they were asked how attrac-
tive they found the face by selecting a value between 1 (very unattractive) and 7 (very attractive). Answers to 
these questions were given using the computer mouse; participants could correct their answers as often as they 
wanted before proceeding by pressing the spacebar. To avoid response-specific motor preparation, the different 
response alternatives were placed at different positions around a circular response screen, as shown in Fig. 1b. 
Trials were separated by an inter-trial interval randomly varying between 800 ms and 1200 ms. Participants were 
instructed to keep central fixation during the inter-trial interval and the stimulus presentation; during these 
periods a pink fixation dot was overlaid in the centre of the screen. Eye-movements were not tracked during 
the experiment. Further, participants were asked to restrict eye blinks to the period when they selected their 
responses. The experiment was carried out in a dimly lit, quiet room. Stimuli were presented on a VIEWPixx 
display with a 1920-by-1020 resolution and stimulus presentation was controlled using the Psychtoolbox74.

EEG recording and preprocessing.  EEG signals were recorded using an ANT Waveguard 64-electrode 
system. Electrodes were arranged in accordance with the standard 10–10 system. EEG data were recorded at 
250 Hz sampling rate using the ANT Neuroscan Software. Offline preprocessing was performed using FieldTrip75. 
EEG data were referenced to the Fz electrode (which was discarded after preprocessing), epoched from − 500 ms 
to 1900 ms relative to stimulus onset, and baseline-corrected by subtracting the mean pre-stimulus signal for 
each electrode. A band-pass filter was applied to filter out 50 Hz line noise. Channels and trials containing exces-
sive noise were removed based on visual inspection. On average, 5.1 channels (SD 2.2) and 73.4 trials (SD 30.3) 
were removed. Blinks and eye movement artifacts were removed using independent component analysis and 
visual inspection of the resulting components. After preprocessing, EEG epochs were cropped from − 250 ms 
pre-stimulus to 1450 ms post-stimulus.

Measuring neural representational similarity.  To track face representations across time, we used rep-
resentational similarity analysis (RSA40). First, we created time-resolved neural representational dissimilarity 
matrices (RDMs), which reflected the pairwise dissimilarity of the faces’ brain representations across processing 
time. Second, we compared the organization of the neural RDMs to a set of predictor RDMs, which captured 
different dimensions on which the faces’ were similar or dissimilar.

Neural RDMs were constructed separately for each participant, using the CoSMoMVPA toolbox76. RDMs 
were created for 34 time bins of 50 ms width each, ranging from – 250 to 1450 ms relative to stimulus onset. All 
following analyses were done separately for each of these 34 time bins. For each time bin, we extracted a response 
pattern across 12 time points (covering 50 ms at 250 Hz) and 63 electrodes (as during preprocessing electrodes 
were removed, electrode counts could be lower for individual participants). These data were then unfolded 
into a 756-element vector for further analyses. Before RDM construction, we performed principal-component 
analyses (PCAs) to reduce the dimensionality of these response vectors39,77. We split the available data into two 
independent subsets, with an equal number of trials per condition randomly assigned to each subset. The first 
subset of the data was used to perform the PCA decomposition. The PCA decomposition was then projected 
onto the second subset, retaining only the components needed to explain 99% of the variance in the first subset 
(99.1 components on average, SD across time: 13.2, SD across participants: 32.0). RDMs were constructed from 
the second subset. We first averaged across all available trials for each condition, and then correlated the response 
vectors for each pairwise combination of faces. These correlations were subtracted from 1 and entered into a 
100-by-100 RDM. Each off-diagonal entry in this RDM thus reflected a measure of neural dissimilarity for a 
specific pair of faces; RDM diagonals were always empty. This procedure was then repeated with the two subsets 
swapped. Finally, the whole aforementioned analysis was repeated 50 times, with trials assigned randomly to 
the two subsets each time; RDMs were averaged across all repetitions, yielding a single RDM for each time bin.

Tracking neural representations of facial attractiveness.  To characterize the representational 
organization obtained from the neural signals, we compared the neural RDMs to a set of predictor RDMs, sepa-
rately for each time point and participant. Like the neural RDMs, each predictor RDM contained 100-by-100 
entries, which reflected the dissimilarity of pairs of faces on a particular dimension.

To assess how strongly neural representations are determined by facial attractiveness, we created three attrac-
tiveness predictor RDMs: (1) An RDM based on individual participants’ yes/no responses on the first question 
(“is this face attractive?”). For this RDM, pairwise matrix entries consisted of the absolute difference between 
yes/no-responses (coded as 1 and 2) given to the two faces. Note that participants could give different yes/no 
responses across repetitions of the same face. (2) An RDM based on individual participants’ attractiveness ratings 
on question two (“how attractive is it?”). For this RDM, pairwise matrix entries consisted of the absolute differ-
ence between attractiveness ratings (on a 1–7 scale) given to the two faces. (3) An RDM based on the average 
attractiveness ratings (n = 2531) taken from the Face Research Lab London Set (see “Stimuli”). For this RDM, 
pairwise matrix entries also consisted of the absolute difference between attractiveness ratings (on a 1–7 scale) 
given to the two faces. Note that RDMs (1) and (2) were different for each participant, as they were based on their 
individual yes/no responses and attractiveness ratings, respectively, whereas RDM (3) was the same for every 
participant, reflecting a “ground truth” estimate of attractiveness ratings shared across a large group of people.

RDMs constructed from individual participants’ yes/no responses were substantially correlated to RDMs 
constructed from participants’ attractiveness ratings: correlations computed for each individual participant 
were r = 0.68 on average, and the correlation between the RDMs averaged across participants was r = 0.85. RDMs 
constructed from participants’ individual responses in the experiment only showed a weaker correlation to the 
RDM constructed from the average group rating in the database (average r = 0.37 and r = 0.34 for the yes/no 
responses and attractiveness ratings, respectively). When averaging the RDMs across participants, we found a 
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much stronger correlation between RDMs reflecting the average individual-participant responses and the RDM 
reflecting the average ratings from the database (r = 0.80 and r = 0.73 for the yes/no responses and attractiveness 
ratings, respectively), suggesting that (1) there is a substantial amount of inter-individual variability in attractive-
ness ratings, and (2) average ratings in our experiment converged towards the average database ratings.

To quantify the correspondence between each of the predictor RDMs and the neural data, we computed 
Spearman-correlations between the neural RDMs and the predictor RDMs, separately for each participant; for 
these correlations only the lower off-diagonal elements of each RDM were used and the diagonal was always 
discarded. To establish correspondences between the neural RDM and a specific predictor RDM while controlling 
for other RDMs (see below), we used partial correlations43–45; these partial correlations are essentially correlations 
between the residual values after the control variables have been regressed out from both variables of interest. 
All correlations were Fisher-transformed before entering them into statistical analyses.

Controlling for high‑level face attributes.  To test whether representations were uniquely attributable 
to face attractiveness, we explicitly controlled for a set of high-level face properties. Specifically, we controlled for 
a set of person attributes that may influence attractiveness ratings: a person’s sex, ethnicity, and age. For each of 
these attributes we used the self-report metadata included in the Face Research Lab London Set (see “Stimuli”). 
From these data, we constructed three RDMs: (1) An RDM based on the depicted person’s sex. For this RDM, 
pairwise matrix entries were marked as similar when both faces were of the same sex and as dissimilar when 
both faces were of different sexes. (2) An RDM based on the depicted person’s ethnicity; as most of our partici-
pants (21/23) were Caucasian, ethnicity was binarized into Caucasian and non-Caucasian. For this RDM, pair-
wise matrix entries were marked as similar when both faces were of the same ethnicity and as dissimilar when 
both faces were of different ethnicities. (3) An RDM based on the depicted person’s age. For this RDM, pairwise 
matrix entries reflected the absolute age difference between the two faces.

Controlling for deep neural network features.  To test whether neural representations related to face 
attractiveness were explicable by visual features typically extracted during face processing, we used a deep 
neural network (DNN) model trained on face recognition. DNNs are currently the state-of-the-art models for 
approximating the visual feature organization emerging during perception and have been shown to accurately 
approximate the organization of both low-level and high-level features in visual cortex46–48,51–53. Here, we used a 
16-layer DNN for face recognition that was pre-trained on a huge face dataset (VGG-face49), as implemented in 
MatConvNet78. This DNN has previously been shown to mimic the organization of visual feature representations 
during cortical face processing50. To quantify the visual feature organization emerging in the DNN, we first ran 
the 100 face images through the DNN and obtained activation vectors for each of the 16 DNN convolutional 
DNN layers. We then constructed a model RDM for each layer by computing the representational distance 
(1-correlation) among each possible pair of faces.

Statistical testing.  We used one-sided t-tests against zero to identify significant correlations between the 
neural RDMs and predictor RDMs. False-discovery-rate (FDR) corrections were used to control for multiple 
comparisons across time. Exact test statistics and effect size estimates (Cohen’s d) are reported for all peak effects.

Data availability
Stimuli and data are publicly available on OSF79. Other materials are available upon request.
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